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PROBLEM

min f(z)

where f : R” — R and

PATTERN SEARCH METHODS

e Are designed to find (constrained) stationary

points for optimization problems of this form.

e Must be adapted/modified based on the

structure of the feasible region S.




ENGINEERING EXAMPLE: DETERMINING
THE CHARACTERISTICS OF A CIRCUIT

e Work by: Tammy Kolda and Ken Marx (Sandia)

e Variables: inductances, capacitances, diode saturation
currents, transistor gains, leakage inductances, and

transformer core parameters

e Simulation Code: SPICE3

VSIM VEXP) 2 |

t=1

17 unknown characteristics
Simulation voltage at time ¢
Experimental voltage at time ¢

Number of time steps (2700)




WHY USE PATTERN SEARCH
METHODS?

e No Derivatives: Pattern search methods do not

require derivative/gradient /sensitivity information.

Noisy Data: Pattern search methods tend to do
well even when the data is “noisy.”

(Assume the noise is nonstochastic: computer
simulation always returns the same output for a given

input, but the output is known to be inaccurate).

“Embarrassingly” Parallel: Pattern search
methods are amenable to parallelization, even when

the objective (cost) function is serial.
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My GOALS FOR THIS TALK

. Describe what problems can be solved using pattern
search methods.

Two aspects: analysis and implementation.
. Show why pattern search works.

. Show where pattern search “fits” within the context

of gradient-based optimization techniques.

. Demonstrate that analysis is justified by the insight
it provides.

. Show where we are going next.




METRICS FOR “SUCCESS”

1. Can prove an algorithm converges to a (constrained)

stationary point of the original problem:

min f(z)

where f : R™ — R and

2. Can envision robust implementations.

Bottom line: want effective implementations.

Ideally: the analysis opens up algorithmic possibilities

and warns of potential pitfalls.




ASSUMPTIONS ON THE
OBJECTIVE FUNCTION

Shared:

e f is nonlinear and

e f is (at least) continuously differentiable.
Specific to pattern search:

e V f is unavailable and

e approximations to V f are not reliable.




STRUCTURE OF THE FEASIBLE
REGION

Shared:

e Unconstrained:

e Bound Constraints:

e Linear Constraints:

e General (Nonlinear) Constraints:




WHERE DO WE STAND WITH PATTERN
SEARCH?

e Unconstrained

— Analysis well in hand. [Berman, 1969; Polak, 1971;
Céa, 1971; Wenci, 1979; Torczon, 1997;
Lewis/Torczon, 1996; Kolda/Torczon, 2001]

— Software available—sequential (DirectSearch) and
distributed asynchronous (APPS). [Dolan, 1999;
Hough /Kolda/Torczon, 1999; Gurson, 2000;
Shepherd, 2001]

e Bound Constraints

— Analysis well in hand. [Lewis/Torczon, 1999;
Lewis/Torczon, 2000]

— Software available—sequential (DirectSearch) only.
[Dolan, 1999; Shepherd, 2001]




WHERE DO WE STAND WITH PATTERN
SEARCH? (CONT.)

e Linear Constraints
— Analysis well in hand. [Lewis/Torczon, 2000]
— No available software.

Need to handle degeneracy.

e General (Nonlinear) Constraints
— Analysis in hand. |Lewis/Torczon, 2002]

Should—willl—investigate other strategies.

— No available software.




EXECUTIVE SUMMARY OF WORK AHEAD

e Unconstrained

— “Done.”

e Bound Constraints
— Asynchronous distributed implementation.
(Fold in as a special case for linear constraints.)
e Linear Constraints
— Sequential implementation for nondegenerate case.
— Sequential implementation for degenerate case.

— Asynchronous distributed implementation.

e General (Nonlinear) Constraints
— More analysis investigating alternatives.
— Sequential implementations.

— Asynchronous distributed implementations.




THE ANALYSIS PROVIDES THE KEY TO
UNDERSTANDING

The analysis of any nonlinear optimization

algorithm is based on the appropriate choice of:

1. search directions and

2. a step-length control mechanism
——coupled with—

a step acceptance criteria.




(GRADIENT-BASED VvS. PATTERN SEARCH
METHODS

1. Search directions
Gradient-Based: single search direction d.

Pattern Search: sufficient set of directions D, |D| > n + 1,
where “sufficient” is with respect to the cone of feasible

directions.

2. Step-length control

Gradient-Based: globalization strategies coupled with a
sufficient decrease condition, where “sufficient” is with
respect to the amount of decrease realized relative to the
norm of the gradient.

Pattern Search: all steps must lie on a rational lattice (a grid)

coupled with a simple decrease condition.




WHY “PATTERN” SEARCH

Historical origins in the statistics literature

on experimental design [G.E.P. Box, 1957]:

define a pattern of points over which

to sample the function.



What the
statistician

SEEesS:

What the
optimizer

SEEesS:

EXAMPLES

two-level factorial design




EXAMPLES (CONT.)

What the

statistician e composite factorial design

SEesS:

What the

optimizer e

S€esS:




THE UNDERLYING LATTICE

Because of the patterns, traditionally, most
pattern search methods “naturally” restricted the
steps to lattice points.

The unanticipated effect: a built-in step-length

control mechanism.




EXAMPLE: ITERATION k




EXAMPLE: ITERATION k + 1




EXAMPLE: ITERATION k 4+ 2




ExXAMPLE: LATTICE UNDERLYING THE
SEARCH
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DIRECTIONS: CONE OF DESCENT
DIRECTIONS




DIRECTIONS: REQUIRE AT LEAST ONE
SEARCH DIRECTION IN CONE




DIRECTIONS: PATTERN SEARCH
(FUARANTEES AT LEAST ONE IN THE CONE

IF' f is continuously differentiable, then guaranteed at least one

direction of descent, even though we do not know —V f(xy).

=V f(zk)

Pattern search methods are gradient-related.




A SUFFICIENT SET OF SEARCH DIRECTIONS

A sufficient set of search directions should guarantee us that «+f f is
differentiable, at least one search direction lies in the cone of
descent directions.

If the cone of descent directions is a half space—translated by
xr—then a positive basis satisfies our requirement by guaranteeing

at least one direction of descent.

Positive Basis: a set of vectors that allows us to write
any vector in R" as a nonnegative combination of the

vectors in the positive basis.

For unconstrained optimization, the cone of descent directions is a

half space translated by z;.

Therefore a positive basis gives us a sufficient set of search

directions for unconstrained minimization when f is differentiable.




THE DIFFERENTIABILITY OF f IS CRITICAL

fla)=c

The cone of descent directions may not be a translated half space.

A positive basis is no longer guaranteed to form a sufficient set of

search directions.
Common Outcome: convergence to a nonstationary point of f.

Any weakening of the assumption that f is continuously

differentiable suffers from the same fundamental difficulty.




LATTICE: PREVENT STEPS THAT ARE
“T'oo LONG”

decrease too small
relative to the

length of the step




LATTICE: PREVENT STEPS THAT ARE
“T'"'OO SHORT”

decrease too small
relative to the

norm of the gradient




LATTICE: STEPS CANNOT “JAM UP”

All steps must lie on the current lattice, so steps

cannot become arbitrarily close.




LATTICE: REFINEMENT

Only when no more descent can be found using the current pattern.
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Search converges because the grid spacing goes to zero in the limit.




SUMMARY OF PATTERN SEARCH FOR THE
UNCONSTRAINED CASE

1. A sufficient set of directions in the form of a positive

basis (provided f is continuously differentiable).

2. Lattice prevents steps that are either too long or too
short.

Accept any step that stays on the lattice so long as
f(zg + sk) < f(zg) (i-e., simple decrease).




WHAT HAPPENS WHEN WE INTRODUCE
BouND CONSTRAINTS?

—V f(z)




CONE OF FEASIBLE DESCENT DIRECTIONS

—V f(z)




UsING SOME PosiTivE BAsIs Is No LONGER
SUFFICIENT

—V f(z)




PATTERN MUST CONFORM WITH THE
(FEOMETRY OF NEARBY CONSTRAINTS




FEASY FOR BOUND CONSTRAINTS




A SINGLE PATTERN FOR BOUND
CONSTRAINTS

The set of coordinate directions D = {ey, —ey, ..., e, —€, } suffices.

1. The set D forms a positive basis for R™.

Guarantees a gradient-related direction.

2. The set D always conforms to the geometry of the constraints.

Straightforward to preserve the lattice structure and thus protect

the step length and preserve the step acceptance criterion.

Drawback: Lose flexibility in the definition of the set of search

directions.




WHAT HAPPENS WHEN WE INTRODUCE
LINEAR CONSTRAINTS?

/

Geometry is no longer as simple as it was for bound constraints.




OPTIMALITY

Standard for any optimization algorithm.




CONES OF FEASIBLE DESCENT DIRECTIONS

~V f(xg)

Lk

Standard for any optimization algorithm.




PATTERN SEARCH DIRECTIONS DEPEND ON
NEARBY CONSTRAINTS

N N e

Sufficient set if mirrors geometry of nearby constraints.




How TO DETERMINE “GOO0OD” DIRECTIONS

Use the constraint matrix A (from ) to generate the

search directions.

T'wo choices:

1. Enumerate all possible search directions by processing all
possibilities before initiating the search.

Related to the combinatorial problem

of vertex enumeration.

. Dynamically generate only those search directions needed to
conform to the nearby constraints.

A sort of “active set” strategy related to Dantzig’s simplex

method for linear programming.




STRAIGHTFORWARD TO DEFINE “NEARBY”
WHEN CONSTRAINTS ARE NONDEGENERATE

Oops! Not a cone. Reduce ¢ until there are at
most n constraints nearby.




CoMPLICATION WHEN CONSTRAINTS ARE
DEGENERATE

Number of constraints that determines a vertex is greater than n.

Example in R3:

a feasible region defined by a box (nondegenerate)

—Vversus—

a feasible region defined by a pyramid (degenerate)

How to correctly and efficiently identify the cone

of feasible directions?




ACTIVE RESEARCH (QUESTIONS

1. Adaptively generating the correct search directions

for linear constraints.

2. Developing effective asynchronous parallel strategies
for handling linear constraints.




FUTURE RESEARCH (QUESTIONS

1. General (nonlinear) constraints—including effective
asynchronous parallel strategies
2. Effectiveness of alternate step acceptance criteria

e sufficient decrease [Lucidi/Sciandrone, 1997;
Garcia—Palomares/Rodriguez, 1999(7)]

Imposing stronger acceptance criteria allows us to relax the

lattice restriction.

3. Feasible versus infeasible iterates approaches.
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To Sandia National Laboratories, and the CSRI in particular, for
providing support.
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quiet work place and good companionship.

I have had both an enjoyable and a productive visit.




